

Pegunigalsidase Alfa (ELFABRIO®) as a Long-term Enzyme Replacement Therapy in Adults with Fabry Disease: A Systematic Literature Review

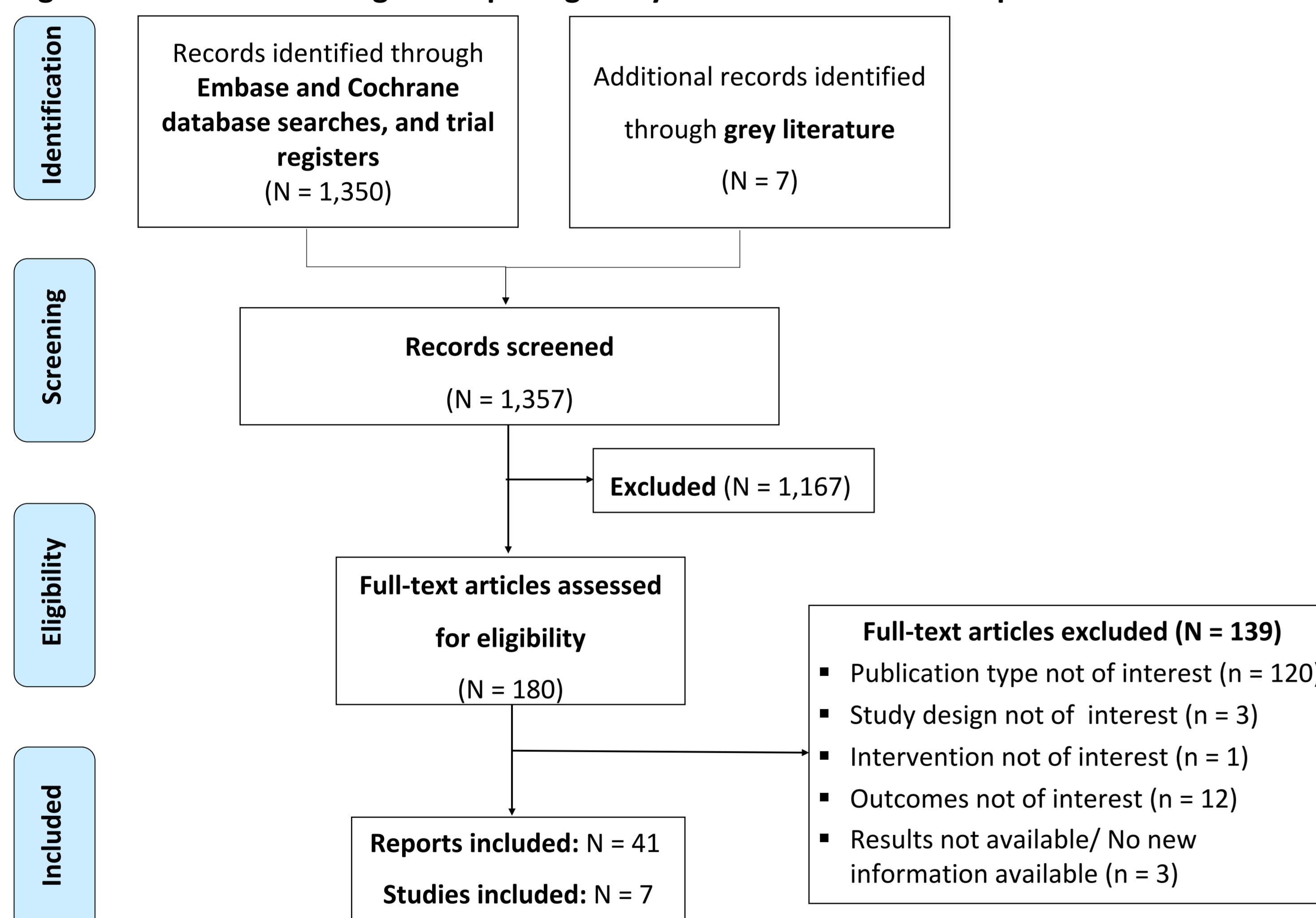
Kamboj G¹, Sharma S¹, Aggarwal S¹, Papadopoulos G², Crowley S², Rathi H¹

¹Skward Analytics, Gurugram, Haryana, India, ²Lucid Health Consulting, Sydney, Australia

CO178

INTRODUCTION

- Fabry disease (FD) is a rare, progressive, multisystemic, and potentially fatal X-linked lysosomal storage disorder caused by a deficiency of α -galactosidase A¹
- This leads to glycolipid accumulation, disrupted cellular metabolism, cell death, and progressive dysfunction of vital organs¹
- Pegunigalsidase alfa, the first PEGylated α -galactosidase A, was developed to enhance stability, prolong half-life, improve bio-distribution, and reduce immunogenicity compared with existing enzyme replacement therapies (ERTs)²
- This systematic literature review (SLR) aimed to evaluate the efficacy and safety of pegunigalsidase alfa in adults with FD, including comparison against other ERTs


METHODS

- A comprehensive literature search was conducted in January 2025 across PubMed, the Cochrane Library, and clinical trial registries (ClinicalTrials.gov, WHO ICTRP, and ANZCTR)
- Randomised controlled trials (RCTs) and open-label extensions (OLEs) evaluating adult patients with FD treated with pegunigalsidase alfa and comparators, agalsidase alfa or agalsidase beta, were included
- Efficacy outcomes included changes in renal function (estimated glomerular filtration rate [eGFR], cardiac function (Left Ventricular Mass Index [LVMI]), and FD biomarker (plasma globotriaosylsphingosine [Lyso-Gb3]))
- Safety outcomes included the incidence and severity of treatment-emergent adverse events (TEAEs)

RESULTS

- A total of 41 publications reporting seven trials (BALANCE, BRIDGE, BRIGHT, BRIGHT-51, PB-102-F01, PB-102-F02, and PB-102-F03) were included (Figure 1)
- Baseline demographics and clinical characteristics were largely comparable across studies (Table 1)
- Patients were predominantly male, with a mean age ranging from 33 to 44 years and baseline median eGFR between 73.7 [2.3] mL/min/1.73 m²/year (BALANCE) and 111.7 [5.5] mL/min/1.73 m²/year (PB-102-F03)
- No trials were identified that compared pegunigalsidase alfa with agalsidase alfa

Figure 1. PRISMA flow diagram depicting study selection and inclusion process

Abbreviations: PRISMA, Preferred reporting items for systematic reviews and meta-analyses.

Table 1. Baseline characteristics of the included studies

Trial	Study design	Intervention arm (N)	Gender, n	Age in years, mean (SD)	eGFR, mL/min/1.73 m ² /year, mean (SD) or mean [SE]	LVMI, mean [SE]	Lyso-Gb3, mean (SD) or mean [SE]
BALANCE ³	Phase III RCT	Peg alfa 1 mg/Kg: 52 Agal beta 1 mg/Kg: 25	Male: 47, Female: 30	44.3 (10.0)	73.7 [2.3]	NR	Peg alfa: 26.22 [3.78] nmol/L Agal beta: 32.14 [7.08] nmol/L
PB-102-F03 ⁴	Phase 1/2 OLE	Peg alfa 1mg/kg: 15	Male: 8, Female: 7	33.4 (NR)	111.7 [5.5]	52.7 [2.2] g/m ²	Male: 124.4 [NR] ng/mL Female: 9.6 [NR] ng/mL
PB-102-F01 and PB-102-F02 ⁵	Phase 1/2 OLE	Peg alfa (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg): 18	NR	NR	111.2 (20.9)	NR	NR
BRIGHT ⁶	Phase III OLE	Peg alfa 2mg/kg: 30	Male: 24, Female: 6	40.5 (11.3)	99.9 (22.1)	NR	19.4 (18.1) nmol/L
BRIDGE ⁷	Phase III OLE	Peg alfa 1 mg/kg: 22	Male: 15, Female: 7	44.0 (11.0)	82.5 (23.4)	NR	38.3 (41.2) nmol/L
BRIGHT 51 ⁸	Phase III OLE	Peg alfa 2mg/Kg: 29	Male: 23, Female: 6	40.9 (NR)	NR	NR	19.36 [3.35] nmol/L

Abbreviations: Agal beta, Agalsidase beta; eGFR, estimated glomerular filtration rate; OLE, Open-label extension; Peg alfa, Pegunigalsidase alfa; RCT, Randomised controlled trial; SD, standard deviation; SE, standard error; LVMI, Left Ventricular Mass Index.

CONCLUSIONS

In adults with Fabry disease, pegunigalsidase alfa demonstrated comparable efficacy and safety profile relative to agalsidase beta, supporting its long-term use. However, direct comparative data versus agalsidase alfa are lacking and further research is warranted

FUNDING This study did not receive any funding, and the authors declare no conflict-of-interest

Poster presented at ISPOR EUROPE 2025, Glasgow, Scotland (9-12 Nov 2025)

REFERENCES:

1. Nicholls K, et al. Intern Med J. 2024;54(6):882-890; 2. Kizhner T, et al. Mol Genet Metab. 2015;114(2):259-67; 3. Wallace EL, et al. J Med Genet. 2024;61(6):520-530; 4. Hughes D, et al. Genet Med. 2023;25(12):100968; 5. Schiffmann R, et al. J Inher Metab Dis. 2019;42(3):534-544;

6. Holdia M, et al. J Inher Metab Dis. 2025;48(1):e12795; 7. Linhart A, et al. Orphanet J Rare Dis. 2023; 18(1):332; 8. Bernet J, et al. Genet Med Open. 2021;1(1):100016.